Keeping Your Friends Close and Your Enemies Closer: Information Networks in Legislative Politics

(This paper was submitted to BJPS on October 7, 2011 in response to an invitation to revise and resubmit for publication)

Nils Ringe
Assistant Professor of Political Science
University of Wisconsin, Madison
201B North Hall
Madison, WI 53706
ringe@wisc.edu

Jennifer Nicoll Victor
Assistant Professor of Political Science
University of Pittsburgh
4600 Posvar Hall
Pittsburgh, PA 15260
jnvictor@pitt.edu

Justin H. Gross
Assistant Professor of Political Science
University of North Carolina, Chapel Hill
361 Hamilton Hall, CB 3265
Chapel Hill, NC 27599
jhgross@unc.edu
Keeping Your Friends Close and Your Enemies Closer: Information Networks in Legislative Politics

ABSTRACT

In this paper we contribute to existing literature on the determinants of legislative voting and offer a social network based theory about the ways legislators’ social relationships affect their floor voting behaviour. We argue that legislators establish social contacts with both political friends and enemies and that they use the information they receive from these contacts to increase the confidence they have in their own policy positions. We maintain that social contacts between political allies have greater value the more the two allies agree on policy issues, while social contacts between political adversaries have greater value the more the two adversaries disagree on policy issues. To test these propositions we employ social network analysis tools, and we demonstrate how to appropriately account for network dependence using a multilevel modelling approach. Importantly, our analyses rely on a unique set of data that directly measures social contacts between legislative offices in the European Parliament, rather than using indirect measures of social connectedness as proxies.
Scholars have spent decades developing and testing models that explain why legislators vote the way they do. Great advances have been made by demonstrating the variety of factors that determine legislators’ votes, including cues (Matthews and Stimson 1975, Kingdon 1981, Ringe 2010), ideology and party (Poole and Rosenthal 1997, 2007; Cox and McCubbins 1993, 2005; Arnold 1990, Hix et al. 2007), constituency (Mayhew 1974; Fenno 1978), and political ambition (Schlesinger 1966; Herrick and Moore 1993; Victor 2011), among others. This literature has more or less stalled however, since party and ideology explain upwards of 90-95 percent of the variance in individual level voting in a legislature like the U.S. Congress, offering parsimonious explanations; predictive accuracy above this threshold is extremely challenging at best. However, pursuit of further explanations of voting behaviour may be worthwhile for at least two reasons. First, theories that explain the most difficult-to-explain variation in voting, as well as the “easy” votes, offer true advancement in our understanding of the most consequential of legislative behaviour. Second, understanding the behaviour of elected officials when they are not strictly following their party line may provide the best window into the quality of representation provided by democratic institutions. A parsimonious theory that explains deviant cases without contradicting conventional wisdom provides a great advancement to scientific knowledge.

We argue that legislators’ voting behaviour is highly interdependent—that is, legislators decide how they will vote on policies based on their relationships with their colleagues, and their colleagues’ ideology, which creates expectations about how legislators are likely to vote. The interdependence in voting has at least two important implications that cause this work to deviate from prior work in this area. First, if we assume that legislative voting is interdependent, then it is not appropriate to examine it at the individual-level unit of analysis. Rather, we must examine
relationships between legislators as the analytical unit. The “smallest” unit of this type is the dyad. Analyzing all dyadic combinations of legislators and their relationships with one another allows us to evaluate the extent to which legislators’ are indeed interdependent in their voting behaviour. Second, in contrast with existing dominant literature in this area, we are explicit about our assumption that legislators are not independent of one another. Rather we develop a theoretical and empirical model in which legislators are interdependent.

To that end, we posit that legislators’ social connections are positively related to their voting patterns, and that the voting patterns are conditional on legislators’ expectations about their colleagues’ voting intentions. Put more plainly, if a legislator anticipates that he is likely to agree with a colleague, their actual rate of voting agreement increases as their level of social connectedness increases. But if a legislator anticipates that she is unlikely to agree with a colleague, their rate of voting agreement decreases as their level of social connectedness increases. Such dynamics are anticipated because, for legislators who tend to agree, social connectivity provides an increased level of confidence in the signals they send to one another about how they intend to vote. In this way, it may be useful to keep your friends close. But for political adversaries, or legislators who do not expect to agree with one another, social connectedness provides a counterintuitive inverse relationship with agreement where more highly connected pairs agree less often than less connected pairs. This occurs because of the incentives that legislators have to make social connections to at least some adversaries with whom they expect not to agree. Legislators have incentives to socially connect with those whom they expect to disagree because these discussant partners provide valuable, and clear, cues about policies that help individual legislators to update their own beliefs about their policy preferences. The stronger your expectations are about your level of agreement (disagreement) with a
legislative colleague, the clearer the signal is about a policy and its implications. Moreover, legislators have excellent shortcuts available to them that allow them to easily and accurately identify the legislators with whom the anticipate agreement (disagreement): ideology and party.

To use an example from American politics, not only will liberals expect to support their Democratic friends, they will expect to stand in opposition to staunch conservative Republicans. Liberals may also expect to oppose moderate Republicans, but that expectation is weaker. In this way, it may be useful to keep your enemies closer.

This logic builds on the proposition that legislators solicit information about the policy positions of their social contacts in an effort to check the appropriateness of their own policy predispositions. They then compare the policy positions of their counterparts to the positions they expect them to take before making a vote choice. If the information they expect to receive matches the actual information provided, their predispositions are confirmed; in contrast, if the source provides information that deviates from their expectations it is likely to trigger a re-evaluation of their own initial policy positions (see Calvert 1985). A precondition for this dynamic is that the policy positions of legislators’ social contacts are predictable. If their allies sometimes disagree and their adversaries sometimes agree with them, their positions are less predictable than if they always agree or always disagree, respectively. In both cases, it allows legislators who are uncertain about their policy positions to make more informed vote choices.

To test these propositions, we develop an innovative research design that first identifies and maps the social network of legislators in the Committee on Environment, Public Health and Food Safety of the European Parliament (EP), using contacts between the personal staffs of European Parliament members as a measure of social connections between legislative offices.
We then employ a multilevel model to estimate the relationship between voting tendencies and social connectedness.

The contributions of this project are threefold. First, we make a general argument about legislative voting behaviour and its tendency to be interdependent. We demonstrate that it is valuable to examine the extent to which legislators vote the same way (i.e., voting agreement, or co-voting) and to use a dyadic unit of analysis, which is uncommon in legislative studies. Such an approach is not only the appropriate unit of analysis for the theoretical question at hand, but has the added advantage that it allows us to model a legislature as a social network, thus opening the door to a variety of theoretical and methodological tools not often applied in the legislative arena. However, if legislators are indeed interdependent in their voting behaviour, then using dyadic analysis and studying voting agreement is precisely the appropriate framework to employ. Moreover, our theoretical approach allows us to contribute to existing research on the relationship between disagreement and political behaviour—we show that this relationship is conditional on actors’ level of connectivity and their ideology.

Second, our empirical approach appropriately models the interdependence that inevitably arises from social network data. Standard econometric techniques assume independence between observations, an assumption that is neither desirable nor even applicable in social network analysis. Here, we are specifically interested in how the social network among legislators helps to inform their legislative activity, and we therefore use modelling techniques that allow us to capture the interdependence within the network, rather than assume it away. Our analysis not only emphasizes the importance of social networks to the flow of information in legislatures, but also suggests that the connections legislators establish with each other reflect strategic
considerations, as legislators seem to establish social contacts that maximize the utility of the information they trade.

Finally, the type of data we use for our analysis is unusual and difficult to acquire, as political actors are understandably reluctant to reveal their personal connections due to the political sensitivity of this information. We successfully conducted a survey of legislative staffs, however, that allows us to determine the connections between legislative offices. This has the advantage of being a measure of actual social connectedness, in contrast to prior studies that use proxies, such as cosponsorship. This profoundly increases the confidence we can have in our measures and findings.

SOCIAL NETWORKS AND INFORMATION EXCHANGE IN LEGISLATURES

Despite recent stirrings of interest, social networks among legislators remain an understudied phenomenon. It stands to reason, however, that social connections among individuals and the networks they form have the potential to considerably impact preferences, decision-making behaviour, and policy outcomes in the dense institutional environment of legislative politics. Recent research has begun to contribute to our understanding of social networks in legislatures by studying, for example, the utility of cosponsorship networks (Kirkland 2011; Koger 2003; Fowler 2006; see also Cho 2008; Sinclair 2008), caucus networks (Victor and Ringe 2009), committee assignments as a network (Porter et al., 2005), and seating assignments as a contributor to networks in legislatures (Masket 2008).

It is well established that legislators make choices based on the electoral considerations—they seek to maximize the probability of being re-elected and therefore seek to satisfy their constituents (Mayhew 1974). Moreover, it has been demonstrated that legislators’ vote choices can generally be summarized in a one or two-dimensional policy space, whereby legislators vote
for policies that are nearest their ideal outcome (Poole and Rosenthal 1997, 2007; Krehbiel 1998). However, significant scholarship has shown the spatial model to be an incomplete, and sometimes unsatisfactory, explanation for legislative voting. For example, legislators are known to engage in strategic (as opposed to sincere) voting, which is a violation of a key assumption of the spatial model (Calvert and Fenno 1994; Ferejohn 1986; Jenkins and Munger 2003; Wilkerson 1999). In addition, there may be methodological reasons to be suspect of the primary empirical realization of the spatial model, NOMINATE scores (see Londregan 1999; Clinton, Jackman and Rivers 2004).¹

Further, considerable evidence exists showing legislators’ vote choices to be affected by factors not taken into account by spatial models, yet still consistent with the model of electoral motivations. Most important for our purposes, while the spatial model assumes legislators are atomistic actors, much evidence suggests that they seek cues and signals from one another before deciding how to vote (Matthews and Stimson 1975; Kingdon 1981; Ringe 2010) or which bills to cosponsor (Fowler 2006; Koger 2003). Researchers have also offered evidence of the influence of social connections—formed as roommates in boarding houses (Young 1966); physical proximity on the chamber floor (Masket 2008); or caucus membership (Victor and Ringe 2009). Given this evidence, we seek to test how legislators' social interactions--interacted with ideology--affects their voting decisions.

The literature on social networks in legislative politics indicates that legislators use networks for information exchange (Carpenter, et al 2004; see also Koger, Masket, and Noel 2009; Mooney 1991; Austen-Smith 1992). This is, of course, a critical function, as lawmakers

¹ For example, Londregan (1999) has criticized NOMINATE for not using the full range of possible coalitions between legislators and arbitrarily reducing the dimensionality of bills and legislators in the policy space. Clinton, et al (2004) recommend using a Bayesian procedure that incorporates additional information about agenda setting, etc. Also, Krehbiel (1993, 1999) and Sinclair (2002) have complained that general spatial models make it difficult to discern the influence of actors that are assumed to be influential over legislators, such as parties and constituents.
require extensive information to engage in legislative activity and formulate policy (Kingdon 1981; Arnold 1990; Krehbiel 1991). If we assume that information flows through a lawmaking body, at least in part, via social networks, what should we expect these networks to look like and how should they relate to voting? Building on the literature on decision-making networks in the electorate or among organized interests, one might assume that decision-makers tend to exchange information only with those with whom they are predisposed to agree. After all, research on social networks shows that people tend to choose likeminded political conversation partners (Bauer et al., 1963; Milbrath 1963; Huckfeldt and Sprague 1987). Additionally, lobbyists tend to reach out to legislators who share their policy positions (Hojnacki and Kimball 1998, 1999, 2001). On the basis of these studies, we might expect legislative information networks to be homogenous and for political actors to avoid disagreement, for example because they can rationally reduce the costs of obtaining information by developing relationships only with those who are well-informed and likeminded (Downs 1957) or because of the disabling consequences of disagreement in discussion groups (Lazarsfeld, Berelson, and Gaudet 1948; Berelson, Lazarsfeld, and McPhee 1954; Asch 1956; Mutz and Martin 2001; Mutz 2002).

We suspect, however, that the social networks of legislators include both political friends and political enemies. At a most basic level, this is because we do not typically observe homogenous political networks empirically, even among citizens with low levels of interest in politics (Huckfeldt, Johnson, and Sprague 2004). What is more, legislators have strong incentives to seek information from sources known to have opposing interests, in addition to sources with similar interests. This is because unlike other political actors, such as lobbyists or voters, legislators cannot afford to suppress all dissonance-producing information by choosing to interact only with those with whom they are predisposed to agree. In fact, having information
that is “wholly and completely an extension of individually based political preferences” would put a legislator at a great strategic disadvantage compared to her colleagues (Huckfeldt and Sprague 1987, 1199). In order to succeed in their strategic interaction with a relatively small number of other actors, legislators must maximize the information they have on the content and expected consequences of the policy proposals they seek agreement on, as well as the positions, strategies, and goals of their counterparts. If they limited their search for information to those with similar interests they would put themselves in a weak strategic position, as heterogeneous political networks have the great benefit that they result in a deeper sense of awareness of opposing viewpoints among network members (Mutz 2006). In addition, lawmakers are unlikely to experience psychic distress or social withdrawal in the face of political disagreement, as is the case for individual citizens (Festinger 1957).

In this paper we focus on one critical aspect of information exchange through social networks in legislative politics, namely the utility of exchanging cues with political allies as well as political adversaries (Matthews and Stimson 1975). We maintain that legislators establish social connections with political friends and enemies that allow them to check their policy predispositions against those of other lawmakers. This, in turn, bolsters the confidence they have in their own positions and allows them to make more informed choices when voting. The logic behind this idea is straightforward when the two legislators exchanging information are political allies, as the following example suggests. Let us assume that Legislator A seeks to establish her position regarding policy alternatives X and Y. She is predisposed to favour alternative X, but some uncertainty remains about this policy choice. To minimize this uncertainty, she seeks information from a political ally with whom she agrees most of the time, Legislator B. Because she usually agrees with B, A expects that B will confirm that alternative X is the correct policy
choice. If B meets this expectation and favours alternative X, Legislator A has greater confidence in her choice of alternative X. If, however, B unexpectedly supports alternative Y, it may cause A to re-evaluate her prior beliefs about alternatives X and Y, which may in turn affect her vote choice.

A similar logic applies to information exchange between political opponents, which again points to the value of establishing social connections with legislative enemies as well as friends. Assume that Legislator A seeks information from Legislator C, with whom she tends to disagree. Since she is predisposed toward alternative X and expects C to oppose her position, she anticipates that C will favour alternative Y. If this is indeed the case, A’s inclination to choose alternative X will be confirmed. However, if C unexpectedly indicates his support for alternative X, it may prompt A to reconsider her disposition toward Policy X. Again, these considerations may ultimately affect her vote choice. Notice that in this simplified example, the primary difference between A’s relationship with B and A’s relationship with C is A’s expectation about agreement with her counterparts. We contend that the relationship between legislator connectivity and their tendency to vote the same way is conditioned on legislators’ expectations about agreement, which is based on partisanship and political ideology.

This logic is based on the assumption that the information legislators receive from their social contacts is sincere, rather than a deliberate effort to misrepresent actual positions for strategic reasons. For legislators who are political opponents, this risk seems particularly pronounced because adversaries have a greater incentive to dupe their counterparts. We nevertheless assume that the information exchanged between legislators A and C is sincere, for two related reasons: because the exchange of information is mutual, and because the process is iterative. First, the interaction of A and C is not a one-way street. While A was presented as the
recipient of information provided by C in our example, in reality we would anticipate a mutual
exchange of information. As a result, C has an interest in an honest interaction with A, because
he values the information he receives from A and would risk losing a precious contact if caught
cheating. This is due to the second reason why we assume sincerity: the interaction between
legislators who are highly connected is an iterative process. Within a single interaction, political
adversaries may have strong incentives to misrepresent their true positions; yet, in an iterative
context, cheating is no longer costless, because legislators’ trustworthiness is at stake. This
trustworthiness is the basis for many behavioural norms in Congress (Fenno 1973), however, and
legislators face many penalties for disingenuous behaviour (Cox and McCubbins 1994, Schickler

Calvert presents a formal model that outlines the first of these two examples, where a
political actor receives information from a source of information with similar preferences
(Calvert 1985, p. 545-51). He makes the case that decision makers who rely on sources of
information whose predispositions are in line with their own (or sources that are “biased,” as he
calls it) make more accurate decisions than those who use sources that are objective, or neutral,
in their evaluation of different policy alternatives. Yet, Calvert does not consider that this
conclusion may also apply when the source of information is a political adversary with opposing
preferences. In other words, Calvert makes the implicit assumption that actors seek information
from sources with whom they are predisposed to agree. Our second example demonstrates,
however, that legislators, when trying to establish their policy positions, can receive cues from
political opponents that are of equal value to those received from political allies.

An important precondition for the information-exchange dynamic we describe is that the
receiver of the cue has an exogenous expectation of what the cue she receives from her
colleagues *ought* to be. Only if their positions are predictable can she compare the information she receives to her preconception of what her counterparts’ positions should be and make a more informed vote choice. If her expectation is met, the appropriateness of her tentative policy position is confirmed. Yet, if her colleagues provide information that contradicts her expectations, it increases the likelihood of a re-evaluation of her tentative policy position. Whether this source is a political ally with whom the legislator expects to agree or a political opponent with whom the legislator expects to disagree, it is preferable that the probability of agreement or disagreement is particularly high, because this is what makes their positions predictable. Hence, social contacts that serve as avenues of information exchange between pairs of legislators who are political allies (e.g., who are from the same party or coalition of parties, or who have similar policy preferences) have greater value for legislators trying to establish their policy positions the more the two allies *agree* on policy issues; in contrast, contacts between political adversaries (e.g., legislators are from opposing parties or coalitions, or who have opposite policy preferences) have greater value the more the two adversaries *disagree* on policy issues. In both cases, the cues received from the information source are more predictable and therefore offer greater informational utility.

To summarize, it is worthwhile to focus attention on the tendency of legislators to agree, or vote the same way, because such an approach provides the smallest unit of analysis that allows for an accounting of the interactive and interdependence of legislators’ behaviour (See Sinclair, *et al.* 2011). Voting agreement is conditional on two key characteristics of legislators’ relationships: how connected they are to one another, and their individual expectations about whether or not the pair is likely to agree. When legislators are expected to agree, we expect that greater social connectedness leads to greater voting agreement. However, for legislators who are
expected not to agree, we expect that greater social connectedness leads to less vote agreement. Figure 1 provides a depiction of these relationships (although we do not necessarily expect them to be linear).

[Figure 1 Goes About Here]

As Figure 1 shows, for legislators who generally expect to agree with one another (the solid line), the more socially connected they are, the more likely they are to vote the same way. This is an intuitive expectation. Less intuitive, however, is our expectation that there is a negative relationship between connectivity and voting agreement for legislators who expect not to agree with one another (the dotted line). For legislators on opposite fences, we expect those who are most socially connected to one another to be least likely to agree. We suggest that this is an information gathering strategy, where legislators find it useful to interact with political opponents—the greater the opposition the more useful the interaction.

Of course, the diagram provides an oversimplification of the idea, because legislators’ tendency to agree with one another is not typically a dichotomous position. Rather, if the expectation about agreement is continuous, then the intensity with which legislators hold these beliefs would affect the slope of the lines in the diagram, where being very certain about one’s predisposition to agree (disagree) results in a steeper slope, but less certainty about the tendency to agree (disagree) results in a shallower slope. In this way, legislators’ voting agreement rates are conditional on their level of social connectivity and their ex ante beliefs about whether or not they are likely to agree with one another based on their ideology and partisanship.

Hypothesis 1: The more socially connected to one another two political adversaries are, the less likely they are to vote the same way.

Hypothesis 2: The more socially connected two political allies are, the more likely they are to vote the same way.
Before we turn to a research design that will allow us to test these hypotheses, it is worth noting that the dynamics we anticipate, if accurately depicted, will exhibit a certain degree of endogeneity (to be specific, simultaneity). We maintain that legislators establish social connections in an effort to receive cues from political friends and enemies that will in turn allow them to make more informed vote choices. In order to do this, they have to identify those allies who are particularly likely to agree with them and those opponents who are likely to disagree, as revealed in their voting behaviour. Fundamentally, we consider this to be an iterative process for which it is difficult, if not impossible, to determine what comes first: revealed preferences or social connections; indeed, the ordering may vary from case to case. The causal relationship is further muddled by our expectation that voting agreement is dependent on expected voting agreement, in part, which is itself endogenous. In fact, one may imagine a continuous feedback loop, and since this level of endogeneity rules out strict causal inference, we limit our claims to symmetric association. We conceptualize voting as our dependent variable, however, because the ultimate purpose of establishing social connections is to aid informed vote choices, not vice versa. That is, a legislator establishes connections with colleagues who can provide cues that will allow him to confirm or dismiss his policy predisposition and thus aid his vote choice. In the next section we discuss the ways we address how our empirical analysis deals with this difficult theoretical problem.

RESEARCH DESIGN

To test these hypotheses we require information about the level of social connectedness between legislators. We acquire this information by collecting data on the social relationships of legislative staff in the EP’s Committee on Environment, Public Health and Food Safety (hereafter Environment Committee).
Research on the European Parliament has shown that politics in this first-ever international, genuine law-making body is not structured along national lines, but is primarily party-based. In fact, the party system in the EP has become more consolidated and more competitive as the powers of the EP have increased over time (Hix et al., 2007; Hix et al., 2003). Comprehensive roll-call vote analyses show an increase in ideology-based party competition in the EP on the basis of the traditional Left-Right ideological divide. They demonstrate that members of the EP (MEPs) vote primarily in accordance with their party affiliations, rather than their national affiliations; that the distance between parties on the Left-Right dimension is the strongest predictor of voting patterns; and that EP party groups are remarkably cohesive (Hix et al., 2007; Hix et al., 2005; Thomassen et al., 2004). The power of transnational parties in the EP has thus risen “via increased internal party cohesion and inter-party competition” (Hix et al., 2005).

In this sense, parties are at the heart of politics in the EP. Nonetheless, the EP differs in important ways from a conventional parliamentary regime, most significantly in that there is no government-opposition dynamic, where the executive is tied to a majority coalition in the EU’s legislative chamber. Hence, the institutional framework of the EU exhibits features of a separation of power system (Shackleton, 2005), in which political actors in the EP are less constrained than in traditional parliamentary systems because they are not simply expected to rubber-stamp decisions made at the executive level. The EP is capable of actually creating legislation, ‘a classical parliamentary function almost forgotten by some national parliaments’ (Corbett et al. 2007, p. 9).

In this system, individual legislators play a more important role than in a parliamentary system where party positions are enforced by strong party organizations and backbenchers are
coerced into voting the party line. Policy positions in the EP are actually endogenous to the political decision-making process, and individual legislators take the lead in creating these positions. In fact, party positions in the EP are generated in its specialized committees, where small groups of policy experts create their parties’ policy positions (Ringe, 2009). It is thus not surprising that most of the detailed parliamentary work is conducted in and by committees and that the majority of substantive changes and compromises are constructed inside the committee (Kreppel, 2005).

The existing literature on EP politics has largely focused on the aggregate level and neglected to examine the individual dimension of EP politics. Yet, recent research emphasizes the central role of individuals and the significance of their interaction in EP decision-making (Ringe, 2009), which is enhanced by the importance of informal channels in the political process (Corbett et al., 2007). If it is the case that individuals shape policy positions, it is critical to examine who talks to whom, which actors interact on a regular basis, and how information flows through these networks of individual legislative actors.

Legislative Staff

Legislative staffs, or Parliamentary Assistants in this case, can be viewed as extensions of the legislators themselves, as they are key actors in the legislative offices of MEPs. We view the social network of staffers as a proxy for the corresponding social network of legislative offices. This conceptualization is supported in existing research on legislative staff that is focused primarily on the U.S. Congress. DeGregorio, for example, argues that staffers are not entrepreneurial individualists, but “influence extenders” of their bosses (DeGregorio, 1988: 474), and that staff are largely constrained from pursuing individual ambitions (DeGregorio, 1995). Other scholars have found that elected officials tend to hire staff who share their ideological and
policy views (Hall, 1987; Salisbury and Shepsle, 1981; and DeGregorio, 1988). Existing evidence also suggests that one should expect to find a significant relationship between the networks of legislative staffers and the behaviour of legislators. Whiteman (1995) describes how “congressional enterprises,” or offices made up of legislators and staffers, exchange highly diverse and specialized information with one another. In addition, Romzek and Utter emphasize that networking is one of the primary norms that legislative staffers follow. They argue that staffers use networks to gather information, develop coalitions, and affect legislation (1997: 1269).

The 785 members of the 2004-2009 European Parliament employ 1,416 full-time assistants in their offices in Brussels and Strasbourg (EP website). On average, each MEP is assisted by two staffers, which bolsters our case that staff contacts are a suitable proxy for the social network of MEPs, because legislative assistants in the EP necessarily work closely with their members. These staffers’ tasks and responsibilities range from secretary to gate keeper to political advisor. For this reason, a recent feature article on the EP’s website described MEP assistants as “a sort of secretary-advisor-press-officer-tour guide” (EP website). Their realm of responsibility is usually confined to one of the committees of which their MEP is a member. Assistants prepare position briefs or even draft amendments for their MEPs, while having to balance this legislative part of their work with other organizational and public relations related functions.

Network Data

Examining the relationship between legislators’ social interactions and their legislative behaviour requires information on the social networks that exist between legislative offices. To collect information on such networks, we invited assistants (e.g., staff) to complete a web-based
questionnaire in which they revealed the MEP offices of the assistants with whom they had contact on a regular basis. Participants were given the option of completing the survey in English, German, or French. We contacted non-respondents with requests for in-person interviews to offer an alternative to the impersonal survey format. Interviews were less structured than the questionnaire but designed to obtain equivalent information.

The analysis in this paper is focused on a limited policy area, namely consumer protection and environmental policy. Hence, this analysis seeks to map the network of EP assistants who work for MEPs on the Committee on Environment, Public Health and Food Safety. One concern with this research design may relate to the small subset of legislative offices our analysis focuses on. Why should we care about empirical findings that are drawn from a small group of lawmakers in only one policy area? There are three primary reasons why.

The first relates to the uniqueness of our data, because our analyses are based on actual social connections between legislative offices, as reported by their legislative staff. This means that we are measuring what we set out to measure, rather than using a relational variable as a proxy for social connectedness. We can thus have great confidence in any finding showing a significant effect of social connectedness on legislative outcomes. However, collecting this data is unusually difficult due to its highly sensitive nature, since we ask respondents in legislative offices to reveal to us the other offices with which they have regularized contacts. This is why we were only able to target a small number of respondents.

Second, given how sensitive network analysis is to missing observations and non-response, it is preferable to focus on a complete sub-network of legislators in one policy area than to adopt standard approaches that simply aim for as large a number of observations as possible (see for example Laumann and Knoke 1987; Heinz, et al. 1993). In other words, it is
better to have the highest possible response rate for the environmental policy network only, which we do in this paper, than to maximize the number of cases across all policy areas, even if it means fewer total observations. For example, our response rate for the environmental policy network, comprised of all members of the Environment Committee, is 47 per cent (32 drawn from a population of 65). If we had five times as many respondents across all policy areas (a rather unrealistic number of 160) drawn from the sample of all MEPs (785 at the end of the 2004-2009 legislative term), our response rate would be only 20 per cent and thus much more problematic from a network analysis point of view.

Third, the legislative reports and draft resolutions that are prepared in the responsible committees are not only submitted to the EP plenary in an almost “take-it-or-leave-it” form (Hix 2005: 93), they provide the basis for the positions taken on the EP floor. In fact, the policy positions of the members of the responsible EP committee are highly predictive of the voting patterns of their colleagues on the EP floor, as most MEPs simply adopt the positions of their committee representatives when casting their votes (Ringe, 2009). This aggregation of committee positions to the EP plenary means that our analysis of the voting patterns in the Environment Committee bears considerable significance with regard to EP policy-making more generally, since what happens in committee largely determines what happens on the EP floor.

Our network data were not collected from the entire population of MEPs, but neither were they taken from a sample in the traditional sense. Assistants from all members of the Environment Committee were invited to participate in the study, so we were in effect attempting a census for the associated sub-network. Thus, limitations on any inferences we draw will be a result of non-response, rather than sampling design. Non-response poses a threat to the validity of any survey-based research; the difficulties are compounded in the case of social networks.
There has been some recent progress on missing data problems in network sampling (Frank, 2005; Gile and Handcock, 2006; Handcock and Gile, 2007), but at present there is no clear strategy available. For the time being, we must assume that nonrespondents are missing at random in the sense that whatever mechanism is responsible for certain staff to respond and others not to do so is unrelated to their social and voting habits. Fortunately, we have complete data on votes, so we can at least verify that nonrespondents are not notably different from respondents with respect to the dependent variable. Ideologically, our respondents are strikingly similar to nonrespondents, as evident in Figure 12. Notice that all spatial clusters are represented by respondents; even the four somewhat isolated pairs—three on the right and one on the left—each contain one respondent. Likewise, there is no evidence that certain geographical regions are underrepresented. As shown in Table 1, countries have been grouped roughly by region, and a chi-square test finds no statistical evidence of relationship between nonresponse and region. Similarly Table 2 indicates no indication of any self-selection bias among newer or older members of the European Union.

[Figure 2 Goes About Here]

[Table 1 Goes About Here]

[Table 2 Goes About Here]

For a conventional dataset, these patterns of non-response would give us great confidence in our inferences; for social network data, though, we must be cautious with anything less than a 100 per cent response rate, given the current limitations on our knowledge of how the effects of missingness can be expected to propagate through a network. We sought to capture the entire population of people that worked on the issue area of interest by contacting EP assistants working for each member of the Environment Committee at the time the study was conducted.
We structured the survey and interviews of assistants such that respondents could provide open-ended responses to questions about whom they talk to on a regular basis. Thus, we did not ask respondents to name a fixed number of social contacts, nor did we ask them to restrict their attention to other committee members; we simply asked whom they talk to and left it up to the respondents to provide a list as they saw fit. This approach is supported by social network literature that suggests open-ended question are less likely to produce nonrandom sampling bias than methods where respondents are given a fixed list (Knoke and Yang 2008, 19).

We invited the assistants of all 65 members of the Environment Committee to complete the questionnaire. Of these, we received 32 responses (24 interviews and 8 completed questionnaires), for a response rate of 47 per cent. The Environment Committee inter-office network in its entirety would thus include communication among all sixty-five offices, involving 4,160 dyads (or 2,080 if communication is considered symmetric). If we focus just on those dyads connecting survey respondents, we will have only 870, just about 21 per cent of the full dyad census. However, we do in fact have information on communication between respondents and nonrespondents, since the former were given an opportunity to identify the latter. Taking this information into account yields a dyadic response rate of 46 per cent (direct reports of 1920 of 4160 dyads). If we take respondents’ reports on their contact with nonrespondents’ offices as an indicator of the symmetric relationship of contact between offices, then the only dyads that are completely missing from the study are those consisting of two nonrespondents; we have no information on whether any two nonrespondents communicated with one another. From this point of view, we have a (somewhat unbalanced) dyadic response rate of 71.4 per cent.

In the questionnaire and the personal interviews, respondents indicated the frequency with which they contacted each person in their network. We converted this frequency
information into a dichotomous measure, coding those contacts that occur at least once a month as one (i.e. the actors are connected) and less frequent or non-existing contacts as zero (i.e. the actors are not connected).

The relationship captured by the underlying social network we wish to observe, inter-office communication, is inherently undirected; we are not asking staffers about directed relations such as trust, advice, nor even who initiated contact with whom, but simply whether, and with what frequency, incidents of contact took place for each pair of MEP offices. Thus, we would like to treat the ties actually measured through responses to our survey as undirected, taking a tie to exist between Member A and Member B whenever a staffer from A’s office names B’s office as a contact or vice-versa. To do so, however, would leave us more likely to detect contact between two offices of survey respondents than between two offices only one of which contains a respondent. One solution would be to restrict our attention exclusively to the respondents-only network, forfeiting a lot of data and drastically increasing the chance that non-response bias will invalidate our results. We will thus instead treat social contact as constituting a directed relation, reported contact from respondent to recipient: if two offices contain respondents, both responses will constitute observations, implicitly weighting corroborated reports of contact most heavily.¹⁴

Typically, it is useful to report the density of a network for descriptive purposes. In social network terms, the density is the percentage of all pairs in a network that are tied to one another. In our case it is not straightforward to report the density because, not all dyads have been observed in our network. We are unable to consider pairs of non-respondents in our calculation, as we have had no opportunity to observe social contact, or the lack thereof, between their offices. If we focus solely on the sub-network among dyads where both the respondent and
alter provided us with information, the density is 5.7 per cent (9.7 per cent if we treat the network as symmetric by taking a tie to be present whenever either member of a pair reports inter-office contact). If we instead use all information obtained and analyze the asymmetric sub-network of respondents, where at least one member of the dyad provided us with information, the density is 6.1 per cent (118 out of 1920 possible ties).

Operationalization

The descriptive network analysis above provides intriguing insights into the structure of personal contacts that exist between MEP offices, but it does not allow us to evaluate our theoretical propositions about patterns of social connectedness in legislative politics. In order to test our hypotheses, we collected information on all bills that received a final plenary vote in the EP that fell under the jurisdiction of the Environment Committee during the sixth parliamentary term between July 2004 and July 2008, as well as all votes on amendments to these bills. This provides for a total of forty votes included in this analysis. Following from our hypothesis, we need to operationalize three key concepts in the context of Environment Committee members and bills studied: policy disagreement, political allies and adversary, and social connectedness.

Policy disagreement, the dependent variable in our analysis, is the rate of co-voting; that is, the proportion of votes each pair casts in agreement (either both “Yea” or both “Nay”), given that both members of the dyad voted on a given roll call. An alternative approach would be to treat each roll call vote as a dichotomous variable, predicting agreement on each given bill. To do this convincingly would require information about each bill, as well as addressing the non-independence of the bills. If we were interested in estimating the particular locations of bills with respect to MEPs’ ideal points, we would have no other choice. Our intention here, however, is to gauge the degree to which a pair’s overall propensity to cast votes in common depends upon
social connectedness between the MEPs’ offices, controlling for party and national affiliations. Note that only one predictor variable (point connectivity, see below), is explicitly social network based. The response variable is, however, also relational (dyadic) and subject to many of the same estimation challenges found in social networks, although it does not, strictly speaking, represent social interaction. Figure 3 shows the frequency of co-voting between all pairs and indicates that about 1/3 of all pairs vote together 100 per cent of the time.

To establish which pairs of legislators qualify as political allies or adversaries, a conventional approach would simply use shared party affiliation as an indicator of alliance or else use ideological proximity with respect to a continuous measure, such as NOMINATE score. The former may be too restrictive, as multiple parties are involved and may be expected to cluster on votes. The latter, however, would be too general, as it reflects the full spectrum of issues rather than the particular business of the Environment Committee. Thus, we will use both party identification and voting bloc membership as indicators of what dyads of legislators are friends or enemies, where the voting blocs are inferred from the voting record. Specifically, on the basis of our data, the Group of the United European Left/Nordic Green Left (GUE/NGL) and the Greens/European Free Alliance (Greens/EFA) vote together on committee bills and are thus considered a bloc. Ideologically, they are the furthest to the left according to their NOMINATE 1st dim scores (-0.52 and -0.37, respectively). The centre-left and centre-right parties—the Party of the European Socialists (PES), the Alliance of Liberals and Democrats for Europe (ALDE), the Union for Europe of the Nations (UEN), and the European People’s Party (EPP-ED) (-0.11, 0.03, 0.16, and 0.20 NOM 1st dim, respectively) hang together on roll calls associated with Environment Committee bills and in opposition to the other two most left-leaning parties.15
There are four members who do not vote reliably with either voting bloc and so are not considered members of either. In Figure 4 each node represents a unique MEP, and shapes indicate their parties. The line segments connecting the nodes, “edges” in social network terminology, represent reported social contact between MEP offices. The distance between the nodes in Figure 4 indicates a degree of voting correspondence. Thus, the fact that all nodes for the two left-most parties cluster tightly together, as do the four centre-left and centre-right parties, lends visual support for treating these as party clusters, or blocs.

[Figure 4 Goes About Here]

It might seem strange to include party bloc as an explanatory variable, as it is based upon observation of the voting pattern itself, the very behaviour we are attempting to explain. Note, however, that we are not looking to explain votes by voting bloc per se. That is, we do not simply look for clusters of MEPs voting together often and label them a bloc; rather, this concept of party bloc simply extends the notion of party as predictor. We are agnostic as to whether clustering of parties is coordinated or based on shared preferences. We recognize that a large amount of variance is explained by party membership and, by extension, membership in certain clusters of parties. The point then is to control for common party and shared membership in parties that seem to generally stick together on environmental votes. The two identified blocs correspond to a clean split on their one-dimensional NOMINATE scores (Hix and Noury 2008), with independents and non-affiliated not included in either bloc. As evident in Figure 4, with the exception of only two dyads, all instances of 90 per cent or greater co-voting are intra-bloc dyads. By accounting for the strongest (and most obvious) predictors of shared votes, we will have a chance to detect the softer signals that would otherwise be ignored as noise.
Additionally, notice that we use the voting bloc identifiers to indicate legislators’ *expected* rate of voting together. Including this expected rate of co-voting on the right hand side also helps us with the endogenous causality problem. This is because while our model suggests that social connectedness “causes” co-voting, it may also be the case that the expectation of co-voting leads MEPs to socially connect to one another. We can account for this reverse specification by controlling for anticipated co-voting. By controlling for legislators’ ex-ante tendency to vote together, we are both appropriately modelling our theory and accounting for the possibility that anticipated co-voting drives social connectivity.

For the purpose of measuring the social connectedness of actors in the network, we start with a dichotomous measure of whether or not there is contact between two members of the network. We use this information to generate a network measure called *point connectivity*.\(^{18}\) Point connectivity (“connectivity” for short) calculates the number of members that would have to be removed from the network in order for one actor to no longer be able to “reach” another one. The logic behind this measure is that if there are numerous possible pathways between two actors, they are highly connected with each other (Hanneman and Riddle, 2005). It also allows a more nuanced view of social connection, one based on the overall network structure rather than dyads in isolation. Two offices that have not reported contact with one another but have several contacts in common have a number of channels through which information can flow. Such a measure will also be less sensitive to the effects of missing data; two offices for which direct contact exists but has gone unreported are more likely to have social partners in common than if there were truly no interaction between them, and this will be reflected in their connectivity score. The mean connectivity between two actors in our network is 2.2, with a median of 2, indicating that for a typical dyad, it would take the removal of two nodes from the network to
eliminate all (observed) paths connecting the two offices. The modal dyad has connectivity of just one; 39.5 per cent of office-pairs would be cut off from one another by removal of a single node in the network. A full 12.4 per cent of dyads exhibit zero connectivity; no direct or indirect path connects these pairs of offices. The maximum connectivity score is 12 and applies to only one pair of MPs, a Spanish member of the European People’s Party and a British Conservative. Figure 5 provides a histogram of frequencies of the point connectivity values.

As one might expect, the majority of reported contact takes place between members of the same party. This is evident in Figure 6, which depicts the social contacts between all 65 Members of the Environment Committee. In this graph nodes represent MEPs on the Environment Committee and edges indicate social contact between the staffs in MEP offices. The shape and colour of nodes indicate Members of the same party, whereas the size of a node indicates offices that responded to our inquiries (large nodes) and those that did not (small nodes). The network graph of the Environment Committee shows frequent contact between the staffs in offices of MEPs of the same party stripe, (indicated by the short distance between the nodes), but also a fair amount of cross-party contact. Though it is not indicated in the graph, the data also suggest strong connections among staff members from the same EU member state.19

Statistical Analysis

In attempting to choose and fit a model, we encounter two principal challenges. One is what we will refer to as the fundamental problem of social network autocorrelation. Well known to those who work with social network data, this problem in fact arises whenever dyads (pairs of individuals) are the units of observation, regardless of whether or not they are drawn from a
social network per se. Typical regression-style inference assumes independent observations, but of course, observations on pairs of actors within a single network are highly dependent. At a bare minimum, observations on any two dyads containing an actor in common cannot be considered unrelated. Incorrectly assuming that an observation on dyad \((i,j)\) is independent of an observation on dyad \((i,k)\) leads to biased, inconsistent estimators and underestimation of standard errors.

The second challenge involves a feature of the particular data. Of the 1920 observations, 594 of are on dyads voting together 100 per cent of the time (on the forty Environment Committee bills). Of these, a full 97 per cent (574) are identified as pairs belonging to a common voting bloc. There are in fact two distinct patterns to the voting. One third of the observations exhibit virtually no variation beyond that predicted by voting bloc membership. The remaining observations exhibit a great degree of variation with the potential to be explained by something other than voting bloc membership.

Before introducing the model, let us briefly explain our approach to addressing these two challenges. The fundamental problem of social network autocorrelation is the more serious of the two. A number of strategies have been suggested and improved upon in recent years, but even the most sophisticated of current inference methods do not fully address the problem. Nonetheless, the available methods represent a great improvement over the alternative of ignoring the issue altogether. The crux of the problem is that the autocorrelation structure of relational data may be quite complicated, making it difficult to correctly specify a model, express the likelihood, and estimate the corresponding parameters of interest. The greatest progress has been made on the special case of dichotomous variables, in which the relationship of interest is either present (1) or absent (0) (Holland and Leinhardt, 1981; Wasserman and Pattison, 1996). The best existing approaches for continuous or effectively continuous dyadic variables fall into
the category of multilevel (sometimes called mixed-effects) models. The basic idea is to employ random effects to capture much of the network-type clustering of the observed data, thus greatly reducing the degree to which estimators will be biased and standard errors underestimated. The most obvious type of interdependence is also the source of the most egregious mistakes in estimation; observations on pairs consisting of at least one individual in common cannot conceivable be expected to exhibit independence. This is obvious when the response variable is truly social in nature; if, for instance, y_{ij} measures i’s expressed trust for individual j, this is bound to depend in part on the former’s general tendency to trust and on the latter’s trustworthiness. Although our actual response variable, the co-voting ratio, is symmetric and not truly a social measure, the same potential for autocorrelated errors is nonetheless present, meaning the usual methods of inference will not be applicable. We thus condition on the particular individuals who make up the dyad and do so by including what are known as crossed effects in the multilevel modelling literature (Gelman and Hill, 2007). Rather than assuming these idiosyncratic individual contributions to be fixed parameters (estimated with dummy variables), it is convenient to instead assume these to be drawn from a distribution (typically bivariate normal). It may be helpful to think of this as partitioning the usual error into components associated with each individual actor, leaving any remaining error to be free of the principal source of autocorrelation.

The second challenge becomes apparent if we attempt to fit the OLS version of the linear model (equation 1 below). The misspecification is apparent when we analyze the residuals, which exhibit a distinct pattern and are not normally distributed. Part of the problem is that we are dealing with a limited dependent variable, constrained to lie between 0 and 1. The standard linear regression approach may be applied in the case of a proportional response, but works best
when the observed responses lie far from either endpoint. We will transform the dependent variable by taking the log-odds ratio. This means discarding all the observations of 100 per cent vote agreement and 0 per cent agreement (only five of the latter). While this might seem troubling, we argue that there is virtually no information contained in the discarded data, so including those observations would not change any substantive results. Also, by removing the unanimous votes the estimation provides a more conservative test of our expectation. Finally, removing unanimous votes is consistent with other methods of spatial voting analysis, such as Poole and Rosenthal’s NOMINATE scores (Poole and Rosenthal 1997). As mentioned earlier, those who vote together on all forty roll calls are members of the same voting bloc. We might surmise that these individuals’ votes on Environment Committee bills are the result of their conscious intra-bloc discipline; in any case, we can do no better in predicting their decisions than by using their membership in the two voting blocs. We include results for the (misspecified) linear version, which makes use of all the data as well as the log-odds-transformation fit to the subset of data.

To test our hypotheses we conduct a series of analyses. Our objective is to determine if more socially connected political allies (MEPs from the same voting bloc) are more likely to vote together (Hypothesis 1) and if more socially connected political adversaries (MEPs from opposite voting blocs) are less likely to vote together (Hypothesis 2). We start with the OLS version of our model, both for simplicity and in order to take note of how estimates may be affected as we address the misspecification.

\[
E\left(\text{co-voting rate}_{ij} \mid x_{ij}\right) = \beta_0 + \beta_1 \text{same party}_{ij} + \beta_2 \text{same coalition}_{ij} + \beta_3 \text{same nationality}_{ij} \\
+ \beta_4 \text{absolute difference in seniority}_{ij} + \beta_5 \text{point connectivity}_{ij} \\
+ \beta_6 \left(\text{point connectivity}_{ij} \times \text{same coalition}_{ij}\right)
\]

(1)
Here, the dependent variable is the co-voting rate between two legislators, that is, the fraction of roll calls on which two MEPs vote in agreement, given that both members of the dyad cast a vote on any given roll call. The independent variables for joint party membership (Same Party), common membership in observed party bloc (Same Coalition), and joint nationality (Same Nationality) are set to 1 if the pair belongs to the same party, bloc, or nation respectively. We also include the Absolute Difference in Seniority of any two MEPs as an independent variable.28 Finally, we include the Point Connectivity of the given pair, as well as the interaction between point connectivity and membership in the same voting bloc, to test the hypothesis that social proximity will predict a lower rate of co-voting among political adversaries from opposite voting blocs. Adding this interaction term will provide a key insight that allows us to test our primary questions of interest.

\[
E(\text{co-voting rate}_{ij} | x_{ij}, a_i, b_j) = \beta_0 + \beta_{\text{same party}} x_{ij} + \beta_{\text{same coalition}} x_{ij} + \beta_{\text{same nationality}} x_{ij} \\
+ \beta_{a} \text{absolute difference in seniority}_{ij} + \beta_{b} \text{point connectivity}_{ij} \\
+ \beta_{ab} (\text{point connectivity}_{ij} \times \text{same coalition}_{ij}) + a_i + b_j
\]

\[
(a_i, b_j) \sim MVN(0, \Sigma), \Sigma = \begin{bmatrix}
\sigma_a^2 & \rho \sigma_a \sigma_b \\
\rho \sigma_a \sigma_b & \sigma_b^2
\end{bmatrix}
\]

where \(x_{ij}\) represents covariates \((x)\) between legislator \(i\) and legislator \(j\), and \(a_i\) and \(b_i\) represent random effects associated with respondent and the alter, respectively.

This linear mixed-effects (multilevel) model (2) was fit via restricted maximum likelihood (“lmer” function in R) using all the observations, but the assumption of linearity in the expected co-voting rate is incorrect, as apparent from the residual analysis on the OLS model (1) (Tremblay 2011). The misspecification that results in non-normal residuals for OLS also translates into non-normal random effects in this first attempt at a multilevel model. The random effects, \((a_i, b_j)\) correspond, respectively, to idiosyncratic error associated with the survey
respondent and the member office with which she is reporting possible contact. In this way, we take into account the tendency for observations on dyads with an individual in common to be correlated. For instance, those tending to vote with the winning voting bloc will in general have high co-voting rates with more colleagues than those tending to vote on the losing side. This variability can now be associated with the individual rather than with the dyads to which she belongs. Note that we are not interested in the estimated parameters for the normal distribution presumed to generate these random effects; this is purely a device by which to induce network-type dependence in order to allow the remaining errors to be more nearly conditionally independent.

Finally, we transform the dependent variable, taking the expected log-odds of co-voting to be a linear function of dyadic covariates, and dropping dyads with 0 per cent or 100 per cent vote agreement. Again we used “lmer” in R, this time employing the Laplace approximation to fit the resulting generalized linear (logit) mixed effects model (Tremblay 2011; R Development Core Team 2011; Tierney and Kadane 1986).

\[
E \left[\log \left(\frac{CVRATE_{ij} \cdot \alpha \cdot \beta}{1 - CVRATE_{ij}} \right) \right] = \beta_0 + \beta_1 \text{same party}_{ij} + \beta_2 \text{same coalition}_{ij} \\
+ \beta_3 \text{same nationality}_{ij} + \beta_4 \text{absolute difference in seniority}_{ij} + \beta_5 \text{point connectivity}_{ij} \\
+ \beta_6 (\text{point connectivity}_{ij} \times \text{same coalition}_{ij}) + a_i + b_j
\]

(3)

Results

Our primary finding is that the more closely connected a pair of legislators from opposite voting blocs is, the less often they vote together, for the coefficient on point connectivity is negative and statistically distinguishable in all three model specifications, even when controlling for party and voting bloc affiliation (see Table 3). This finding confirms our key Hypothesis
(H1), the counterintuitive claim that socially connected MEPs from opposing voting blocs are less likely to vote together.

Unfortunately, our data prevent us from fully evaluating hypothesis 2—the intuitive claim that socially connected political allies will tend to vote together. This is because there is virtually no variability in voting patterns among same-coalition members that cannot be explained by coalition membership alone. Of 594 same-coalition dyads, a full 574 voted together on one hundred per cent of the Environment Committee bills. This means that our findings concerning this proposition are inconclusive: there is not enough variance in this particular data to allow us to either confirm or dismiss Hypothesis 2.

Notice that joint nationality and difference in seniority are not statistically significant in any of the models, and that membership in the same party is not significant when controlling for membership in the same voting bloc; being in the same party does not predict any additional propensity to cast identical votes beyond what is predicted by virtue of being in the same cluster of parties taken to be a voting bloc. On the bills analyzed here, parties show no additional cohesion beyond that displayed by the voting blocs as a whole. The complete results of our estimations are shown in Table 3.

Intuitively, the coefficients in the final model (3) can be thought of as expected percentage change in odds of voting together corresponding to a unit change in the predictor, controlling for the covariates. Thus, a coefficient of around 3 on membership in the same voting bloc means that the odds of voting together will be expected to increase by 300 per cent if a pair shares a voting bloc; if the other covariate values yield a prediction of even odds (1:1 or
probability of 0.5) of voting together when legislators are from opposite voting bloc, the odds would jump to 4:1 (or probability of 0.8) if they are in the same voting bloc.

Regarding our primary variable of interest, a unit increase in point connectivity leads to an expected drop of 10 per cent in odds, or (7 per cent - 13 per cent) with 95 per cent confidence for non-voting bloc pairs. On the probability scale, should the expected rate of co-voting be 50 percent (as is the case for two MEPs not sharing a voting bloc), then if point connectivity increases by one unit about its median, from 1.5 to 2.5, this corresponds to a drop of 3 per cent (50 per cent down to 47 per cent) in expected co-voting. Increasing from a standard deviation below the mean point connectivity to a standard deviation above, from 0.6 to 3.8, results in a decrease in expected co-voting rate from 52 per cent to 44 per cent. Figure 7 depicts a graphical representation of this effect. The solid line shows that as dyads from opposite ideological voting blocs increase their social connectivity, their predicted rate of co-voting declines. Without information about social connectivity, we would expect opposing voting bloc members to vote together about 50 per cent of the time, the empirical mean among such dyads.

[Figure 7 goes about here]

It is worth noting that we estimated a series of alternative specifications in attempt to tease out the causality problem described above, but the small number of observations renders our data sensitive to specification changes. This lack of robustness gives us some pause about the general findings here, but our data does support our hypothesis about the negative relationship between social connectivity and voting agreement among political adversaries. The survey we implemented was very specialized, thus precluding immediate data additions, but we hope that future data collection efforts will allow us to confirm this hypothesis.

CONCLUSION
In this paper, we use social network analysis to demonstrate that legislators establish social networks that include both political allies and political enemies, and that they appear to use these information networks to engage in sophisticated cueing. We also illustrate the utility of social network analysis for the study of legislative politics. Indeed, it is only through a social network approach that we can convincingly operationalize our theoretical propositions, and only by modelling network interactions in a principled manner, as by the inclusion of appropriate mixed effects, that we can examine the empirical evidence for such a theory.

This paper makes theoretical, methodological, and empirical contributions to the literature on legislative politics, specifically, and applications of social network analysis, more broadly. Our argument about information exchange and social ties in legislative politics suggests that legislators establish relationships with political friends and enemies in an effort to evaluate the appropriateness of the positions they are predisposed to take concerning particular issues. A legislator can test her predisposition by soliciting information about the positions of the colleagues she is socially connected to. If these colleagues provide cues about their policy positions that match her expectations, her predisposition is confirmed; if they deviate from the expectation, it is likely to trigger a re-evaluation of her initial position and potentially a different vote choice. However, the legislator must have a clear expectation of what the positions of their social contacts ought to be; this is only the case if they either consistently agree or consistently disagree with her. The relationship between social ties and anticipated agreement is interactive with respect to voting. Therefore, social contacts between political allies have greater value the more the two allies agree on policy issues, while social contacts between political adversaries have greater value the more the two adversaries disagree. Following this logic, we expected social ties between legislators to be positively associated with co-voting for ideologically similar
legislators, a proposition that the nature of our particular data set prevents us from evaluating, and negatively associated with co-voting for those who are ideologically opposed, which our data confirms.

The primary contributions of this paper are in theory and method. Theoretically, we have more fully developed the socially derived determinants of legislative voting. We offer an explanation for legislators’ tendency to seek “strange bedfellows” for strategic reasons and demonstrate the utility of informational cueing that occurs between legislators. Additionally, we contribute to the existing contradictory literature on the relationship between political disagreement and political behaviour. We show that for legislators this relationship is conditional on social connectivity and ideology. The empirical tests of this theory are compromised because of an intractable causality problem, which is not at all unusual in political science, and because our attempt to collect true social network data from EP staffers resulted in a small number of observations, missing data, and lack of variance on some key terms of interest. These problems limit the inferences we can draw from our analyses, but we are, at least, encouraged that we find some support for our claims in the statistical approaches presented here.

Methodologically, this paper makes an important contribution by illustrating a manner of appropriately incorporating social network measures into traditional statistical models used to test inferences that are of interest to political scientists. We have demonstrated that regression models that include social network measures must be treated with care because of interdependence between observations. In our investigation we successfully employed a mixed model approach that includes random effects for each member of each dyad and hence corrects for the dependence between observations.
REFERENCES

Tremblay, Antoine. 2011. LMERConvenienceFunctions: A suite of functions to back-fit fixed effects and forward-fit random effects, as well as other miscellaneous functions. R package version 1.6.3. http://CRAN.R-project.org/package=LMERConvenienceFunctions

Table 1 No evidence of response bias by region

<table>
<thead>
<tr>
<th></th>
<th>East</th>
<th>North</th>
<th>South</th>
<th>West</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>17</td>
<td>35</td>
</tr>
<tr>
<td>Response</td>
<td>(14.29)</td>
<td>(17.14)</td>
<td>(20.00)</td>
<td>(48.57)</td>
<td>(100.00)</td>
</tr>
<tr>
<td>Respondent</td>
<td>(13.33)</td>
<td>(16.67)</td>
<td>(30.00)</td>
<td>(40.00)</td>
<td>(100.00)</td>
</tr>
<tr>
<td>Total</td>
<td>(13.85)</td>
<td>(16.92)</td>
<td>(24.62)</td>
<td>(44.62)</td>
<td>(100.00)</td>
</tr>
</tbody>
</table>

Pearson Chi-square (3) = 0.935, Pr = 0.817
Table 2 No evidence of response bias by date of joining EU

<table>
<thead>
<tr>
<th></th>
<th>EU member prior to 2004</th>
<th>Joined EU since 2004</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Response</td>
<td>30 (85.71)</td>
<td>5 (14.29)</td>
<td>35 (100.00)</td>
</tr>
<tr>
<td>Respondent</td>
<td>24 (80.00)</td>
<td>6 (20.00)</td>
<td>30 (100.00)</td>
</tr>
<tr>
<td>Total</td>
<td>54 (83.08)</td>
<td>11 (16.92)</td>
<td>65 (100.00)</td>
</tr>
</tbody>
</table>

Pearson Chi-square (1) = 0.3752, Pr = 0.540
Table 3 Regression Results for restricted sample

<table>
<thead>
<tr>
<th>Variable</th>
<th>(1) OLS</th>
<th>(2) Linear Multilevel</th>
<th>(3) Log-odds Multilevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.6111</td>
<td>0.484</td>
<td>0.1379</td>
</tr>
<tr>
<td></td>
<td>(0.0105)</td>
<td>(0.0285)</td>
<td>(0.1613)</td>
</tr>
<tr>
<td>Joint party membership</td>
<td>0.0164</td>
<td>0.0063</td>
<td>-0.0953</td>
</tr>
<tr>
<td></td>
<td>(0.0119)</td>
<td>(0.0079)</td>
<td>(0.0704)</td>
</tr>
<tr>
<td>Joint membership in a voting bloc</td>
<td>0.3552</td>
<td>0.5590</td>
<td>2.9103</td>
</tr>
<tr>
<td></td>
<td>(0.0147)</td>
<td>(0.0135)</td>
<td>(0.0985)</td>
</tr>
<tr>
<td>Joint nationality</td>
<td>0.0141</td>
<td>0.0028</td>
<td>0.0356</td>
</tr>
<tr>
<td></td>
<td>(0.0186)</td>
<td>(0.0120)</td>
<td>(0.0885)</td>
</tr>
<tr>
<td>Difference in seniority</td>
<td>0.0023</td>
<td>0.0019</td>
<td>0.0014</td>
</tr>
<tr>
<td></td>
<td>(0.0045)</td>
<td>(0.0036)</td>
<td>(0.0251)</td>
</tr>
<tr>
<td>Point connectivity</td>
<td>-0.0716</td>
<td>-0.0234</td>
<td>-0.1020</td>
</tr>
<tr>
<td></td>
<td>(0.0043)</td>
<td>(0.0051)</td>
<td>(0.0307)</td>
</tr>
<tr>
<td>(Point connectivity) × (Joint membership in a voting bloc)</td>
<td>0.0711</td>
<td>0.0110</td>
<td>0.0801</td>
</tr>
<tr>
<td></td>
<td>(0.0055)</td>
<td>(0.0045)</td>
<td>(0.0298)</td>
</tr>
</tbody>
</table>

The dependent variable in each model is the proportion of roll call votes on which each dyad of legislators voted the same way. Models (1) and (2) are admittedly misspecified and presented for purposes of comparison. Model (1) is straight OLS. Model (2) is fit with all observations and includes a random effects estimator, but assumes a linear relationship that is unrealistic at least for extreme values of the response variable. Model (3) excludes observations with perfect co-voting and transforms the dependent variable. Numbers in parentheses are standard errors.
Figure 1 Hypothetical Relationship between Voting Agreement and Social Connectivity, Based on Anticipated Agreement
Figure 2 No evidence of response bias by ideological position.
Figure 3 Co-voting Rates for Each Reported Committee Member Pair
Figure 4 Voting Blocs Among All 65 Members of the Environment Committee on Environment Committee Bills.
Edges (represented here as line segments connecting certain pairs of nodes) are visible for pairs voting together more than 90 per cent of the time. Nodes of the same shape and colour belong to the same party and large nodes represent survey respondents. The graph shows two voting blocs and cohesion among like-party members.
Figure 5 Relative Frequencies of *Point Connectivity Scores* for All Reported Dyads.
Figure 6 Reported Inter-office Social Contacts Among Staff of All 65 Members of the Environment Committee.

Nodes of the same shape and colour represent members belonging to the same party. Size of node differentiates respondents (large) from nonrespondents (small). The graph shows frequent contact between same-party MEPs, and a fair amount of cross-party contact.
Figure 7 The dark solid line represents the predicted rates of co-voting under the log-odds multi-level model for pairs NOT in the same voting bloc and varying rates of connectedness. The graph shows that political “enemies” tend to vote together less often as they become more connected. (The predicted change appears nearly linear on the probability scale in the neighbourhood of 50 per cent co-voting, but this is not the case for less typical values.)
Thank you for agreeing to participate in this short survey. This questionnaire will take about 15 minutes to complete.

Purpose: The purpose of the study is to investigate the communication networks of parliamentary assistants. We are interested in learning how you communicate and interact with other parliamentary assistants.

Your personal information: In the survey that follows we ask you to reveal what you may feel is personal information and we understand if you feel some hesitation to do so. To help ease your hesitation it is important that you know the following:

- Any information you provide us will remain strictly confidential. We will not share your data or information with anyone.
- Results of this study are to be used strictly for academic research. Any publications resulting from this project will only describe general trends. Nobody will be identified by name, and it will be impossible to attribute any quotations or findings to you. If you have any questions or concerns, please feel free to contact me using the information below.

Right to Withdraw: You understand that you can withdraw from this research study at any time. You can ask to be removed from this study if you feel the confidentiality of the information you provide is not sufficiently guaranteed.

INSTRUCTIONS AND DEFINITIONS

Below, we ask you to name the parliamentary assistants with whom you have had recent contact. By parliamentary assistants we mean assistants employed in the offices of Members of the European Parliament (MEPs) who help MEPs with their parliamentary work.

*It is okay to repeat names in the questions.

1a. Who are the parliamentary assistants with whom you had LUNCH in the past two weeks?
1b. For which MEP does each of the assistants you named to the left work?
1c. How often would you say you have contact with each of the assistants you named to the left? (daily, 2-3 times a week, once a week, 2-3 times a month, once a month or less)

2a. Who are the parliamentary assistants with whom you have spoken on the PHONE in the past two weeks?
2b. For which MEP does each of the assistants you named to the left work?
2c. How often would you say you have contact with each of the assistants you named to the left? (daily, 2-3 times a week, once a week, 2-3 times a month, once a month or less)

3a. Who are the parliamentary assistants with whom you spoke at an event or RECEPTION after work hours in the past two weeks?
3b. For which MEP does each of the assistants you named to the left work?
3c. How often would you say you have contact with each of the assistants you named to the left? (daily, 2-3 times a week, once a week, 2-3 times a month, once a month or less)

4a. Who are the parliamentary assistants with whom you have E-MAILED in the past two weeks?
4b. For which MEP does each of the assistants you named to the left work?
4c. How often would you say you have contact with each of the assistants you named to the left? (daily, 2-3 times a week, once a week, 2-3 times a month, once a month or less)

5a. Who are the parliamentary assistants with whom you met casually for a cup of coffee or informal chat in the past two weeks?
5b. For which MEP does each of the assistants you named to the left work?
5c. How often would you say you have contact with each of the assistant you named to the left? (daily, 2-3 times a week, once a week, 2-3 times a month, once a month or less)

6a. Who are the parliamentary assistants with whom you spoke at a MEETING in the past two weeks?
6b. For which MEP does each of the assistants you named to the left work?
6c. How often would you say you have contact with each of the assistants you named to the left? (daily, 2-3 times a week, once a week, 2-3 times a month, once a month or less)

7. How long have you worked for your current boss (MEP)?
8. For which MEP do you work?
9. How long have you worked for the EP?
What is your gender?

This concludes the survey. Thank you for participating. We appreciate your valuable time. When you click ‘done’ below your responses will be sent to the researcher and your web browser will be directed to the EP homepage. If you'd like to provide comments for the researcher you may do so here:
Our expectations about lawmakers’ networks is consistent with evidence shows that networks in which individuals have little discretion in the selection of informants are more likely to be heterogeneous (Huckfeldt 1983; Huckfeldt and Sprague 1995).

There are, of course, other reasons why legislators may build heterogeneous social networks. One may be personal relationships that they have developed with legislators from “across the aisle,” or even genuine friendships—which are not unheard of in legislative politics. Also, legislators may like to check the strength of their own arguments by debating political opponents (but see Mutz 2006). Finally, majority requirements in legislatures without strong majority parties or party coalitions may force legislators to look beyond party lines in the deliberation and negotiation of legislation. We do not deny the potential importance of these incentives but focus on information exchange in the form of cues in this paper.

See also Fiorina (1990), who discusses the potential benefits and rewards of political disagreement.

Note that the case where a legislator seeks information from a source whose position is unknown is observationally equivalent to a situation where the source of information is objective or neutral. This is because in both cases Legislator A can have no expectation of what her source’s position ought to be and how it relates to her own predisposition. It is worth emphasizing, however, that a source that is truly objective should be a rare occurrence in the context of our discussion, if it exists at all. This is because our main focus is on contacts between legislators. We do not conceive of legislators as political actors who can be truly objective or neutral, because they have distinct political objectives that they seek to achieve and because they have a stake in the public policy they make. Moreover, even if a source were objectively neutral, the recipient of the information cannot be certain that she is, in fact, provided with unprejudiced information. As a result, the major categories that are meaningful in our theoretical context are legislators whose positions are either predictable or uncertain.

In the EP, committee seats are allocated to the EP party groups proportionally to their size in the plenary. The party groups then decide on individual assignments (for a detailed discussion, see Yordanova 2009).

Survey questions can be found in the Appendix. The survey was hosted by Surveymonkey.com.

English and French are the working languages of the European Union. The great majority of legislative assistants, if not all, speak at least one of these languages. We also made the questionnaire available in German because more MEPs are native German speakers than any other language.
In fact, we tried collecting equivalent data in the US Congress and found *not a single person* who was willing to divulge this information.

We received one staffer response per office after sending a general request for a survey response to each MEP office. The sample of interview respondents shows that the staffers responsible for environmental issues were the ones responding to our questionnaire, which gives us confidence that the network we identify is truly the EP “environmental policy” network.

The NOMINATE scores are based on all roll call votes from the first half of the sixth European Parliament, between July 2004 and December 2006 (Hix and Noury 2008). We are grateful to Simon Hix and Abdul Noury for making these scores available.

Three members, from Bulgaria and Romania, were excluded because they joined the EP in January 2007.

Interviews were conducted in June and July 2007.

This is “unbalanced” in the sense that we will have had two opportunities to observe contact for dyads consisting of two survey respondents, but only one chance at observing dyads with one respondent and one non-respondent. We suspect that the most careful way to handle this discrepancy would be to think of social contact as the latent variable of interest, which is then measured with error that depends on the opportunities to observe contact. We plan to explore this in a subsequent technical paper.

The dependent variable, percentage of votes in common, is of course itself an undirected relation.

The UEN is classified here as a centre-right party, which might strike some as strange. After all, it is an EU-sceptic party that is outside the EP’s “mainstream.” The UEN’s mean score on the Left-Right dimension, however, shows it to be closer to the centre than the EPP (Hix and Noury 2008), and it is clearly a part of a common voting bloc with PES, ALDE, and EPP in the forty votes analyzed here.

We are withholding further information about the party affiliation of these members because to do otherwise would allow readers to identify the MEPs and we wish to protect the anonymity of participants in our study.

Figures 4 and 6 were both created using NetDraw’s spring-embedding algorithm, with some minor manual adjustments to facilitate viewing. Spring-embedding for graphical display is based on a heuristic of nodes as mutually repulsive and edges as springs acting to bring connected nodes closer together. Nodes are initially scattered randomly about the two-dimensional grid, then iteratively relocated so that pairs with short path lengths between them are located closest to one another. “Node repulsion” places limits on how close together any pair
may be placed. At each iteration, the combined forces upon each node are calculated and taken into account, with the system tending toward equilibrium as the net forces approach zero. This type of algorithm does not produce unique representations, but repeated runs tend to produce similar-looking graphs up to a rotation (Hanneman and Riddle, 2005; Borgatti, 2002).

18 At the request of anonymous reviewers, we calculated alternative connectivity measures, such as maximum flow; however, we found our results to be sensitive to such specification changes. We are not all together surprised about the sensitivity of the results because we have small-N and have collected specialized and unique data. The only way to rectify this problem and increase the robustness of the finding is to collect further survey data on connectivity, which is of course impossible at this stage. We also find that as the EP becomes more professionalized over time, staffers are increasingly reluctant to reveal their social connections, thus emphasizing the great value in our data, even though it is imperfect.

19 To refrain from inadvertently disclosing the identities of individual MEPs or staffers, we do not indicate national identity in the figure.

20 There is no theoretical reason to suspect that comparable levels of seniority will predict tendency to vote alike; however, since estimates of standard errors for coefficients on dyadic variables tend to suffer from attenuation bias, leading to high incidence of Type I error, it may be comforting to find no apparent significance where none is expected.

21 Alternative specifications included a model with lagged votes as an independent variable, and a model with joint membership in intergroups as an instrumental proxy. The data are sensitive to these specification changes; however, we find our current specification to be more theoretically consistent and valid than these alternatives. We also explored models with the reverse causality by estimating ERGM (exponential random graph models) with a dichotomous connectivity measure on the left-hand-side. Such models, however, do not allow us to test our hypothesis about the conditional relationship between voting behaviour and social contact, based on ideology, or anticipated agreement. We therefore find our current specification to be the best possible test of our theory.